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Ion Slip Effect on the Flow Due to a Rotating Disk
with Heat Transfer
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The steady hydromagnetic flow due to a rotating disk is studied with heat transfer considering

the ion slip. The governing equations are solved numerically using finite differences. The results

show that the inclusion of the ion slip has important effects on the velocity distribution as well

as the heat transfer.
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1. Introduction

The hydrodynamic flow due to an infinite rota-
ting disk was first introduced by von Karman
(1921). He formulated the problem in the steady
state and used similarity transformations to re-
duce the governing partial differential equations
to ordinary differential equations. Asymptotic so-
lutions were obtained for the reduced system of
ordinary differential equations (Cochran, 1934).
The extension of the steady hydrodynamic prob-
lem to the transient state was done by Benton (1966).
The influence of an external uniform magnetic field
on the flow due to a rotating disk was studied (El-
Mistikawy and Attia, 1990 ; El-Mistikawy et al.,
1991) without considering the Hall effect. Aboul-
Hassan and Attia (1997) studied the steady hy-
dromagnetic problem taking the Hall effect into
consideration. The problem of heat transfer from
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a rotating disk at a constant temperature was first
considered by Millsaps and Pohlhausen (1952)
for a variety of Prandtl numbers in the steady state.
Sparrow and Gregg (1960) studied the steady
state heat transfer from a rotating disk maintained
at a constant temperature to fluids at any Prandtl
number. Later Attia (2002) extended the problem
discussed in (Millsaps and Pohlhausen, 1952 ;
Sparrow and Gregg, 1960) to the unsteady state
in the presence of an applied uniform magnetic
field.

The effect of uniform suction or injection through
a rotating porous disk on the steady hydrody-
namic flow induced by the disk was investigated
(Stuart, 1954 ; Kuiken, 1971 : Ockendon, 1972).
Later Attia extended the problem to the case of an
unsteady hydromagnetic flow in the presence of
an external uniform magnetic field without con-
sidering the Hall effect (Attia, 1998). The effect
of uniform suction or injection on the flow of a
conducting fluid due to a rotating disk was stu-
died (Attia and Aboul-Hassan, 2001) consider-
ing the Hall current with the neglect of the ion
slip.

In the present work the steady hydromagnetic
flow of a viscous, incompressible, and electrically
conducting fluid due to the uniform rotation of an
infinite, non-conducting, disk in an axial uniform
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steady magnetic field is studied considering the
ion slip with heat transfer. The governing non-
linear differential equations are solved numeri-
cally using the finite difference approximations.
Some interesting effects for the Hall current, and
the ion slip are reported.

2. Basic Equations

The disk is assumed to be insulating and rota-
ting in the z=0 plane about the z-axis with a
uniform angular velocity . The fluid is assumed
to be incompressible and has density o, kine-
matical viscosity v, and electrical conductivity o.
An external uniform magnetic field is applied in
the z-direction and has a constant flux density
B,. The magnetic Reynolds number is assumed to
be very small, so that the induced magnetic field
is negligible. The electron-atom collision frequency
is assumed to be relatively high, so that the Hall
effect and the ion slip can not be neglected (Sutton
and Sherman, 1965). Due to the axial symmetry
of the problem about the z-axis, the cylindrical
coordinates (7,¢,z) are used. For the sake of
definiteness, the disk is taken to be rotating in the
positive ¢ direction. Due to the symmetry about
the z=0 plane, it is sufficient to consider the
problem in the upper half space only.

The fluid motion is governed by the continui-
ty equation, the Navier-Stokes equation, and the
generalized Ohm’s law (Sutton and Sherman, 1965)
which are respectively given by

— —

V.V=0 (1)
o(VN) V==Vp+ V2V +]xBo (2)
T=o| B+ VaB,— BBy +E2LTxB,) 1B, | (3

where E is the electric field which results from
charge separation and is in the z-direction which
implies that it has no effect on Lorentz force term
7/\§0 and consequently on the equations of mo-
tion. The last term in the last equation expresses
the ion slip effect, where #=1/ngq is the Hall fac-
tor, n is the electron concentration per unit vol-
ume, —q is the charge of the electron, and Bi
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is the ion slip parameter (Sutton and Sherman,
1965) . In cylindrical coordinates, the velocity vec-
tor is written as

V=ué,+vé,+we:

Expressing the rest of vectors in Eq. (3) in cylin-
drical coordinates and solving for the unknown
vector fand, in turn, substituting in Egs. (1) and
(2), the set of equations of steady motion takes

the form

U+ 10,20 (4
0 < uu,r-l-wu,z—v?z) -I-%(au—l?ev) +pr
=u<u,w+ L;;r _%+u,&> )
p< uv,r+ wv’z+u771)> -I-%(av + Beu) o

=p< wr%%—%-l— z),zz>

o(uw,»+ww.z) —I-p,z:/z( w,rr+%+ w,zz> (7)

where Be (=08B,) is the Hall parameter which
can take positive or negative values and a=1-+
BeBi. The boundary conditions are given as

z=0, u=0, v=7rw, w=0 (8a)
z— 0, yu—0, v—0, p— D (8b)

Equation (8a) indicates the no-slip conditions of
viscous flow applied at the surface of the disk. Far
from the surface of the disk, all fluid velocities
must vanish aside the induced axial component as
indicated in Eq. (8b). We introduce von Karman
transformations (von Karman, 1921),

u=roF, v=r0G, w=JovH, z=vv/wt,
pP—po=—pv0P

where ¢ is a non-dimensional distance measured
along the axis of rotation, F, G, H and P are
non-dimensional functions of the modified verti-
cal coordinate ¢. We define the magnetic interac-
tion number y by y=0B%/0w which represents
the ratio between the magnetic force to the fluid
inertia force. With these definitions, Eqgs. (4)-(8)
take the form
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Té,‘l‘zF:O (9)
2
‘fig i ‘Z P4 Gl P =BeG) =0 (10)
2
‘fjg Hffg UG~ (4G BeF) =0 (1)
217 H  dp
a;é,z _H%—%&:O (12)
£=0, F=0, G=1, H=0 (13a)
{=o0, F—0,G—0, P—0 (13b)

The above system of Egs. (9)-(11) with the pre-
scribed boundary conditions given by Eq. (13)
are sufficient to solve for the three components of
the flow velocity. Equation (12) can be used to
solve for the pressure distribution if required.

Due to the difference in temperature between
the wall and the ambient fluid heat transfer takes
place. The energy equation, by neglecting the dis-
sipations, takes the form (Millsaps and Pohlhausen,
1952 ; Sparrow and Gregg, 1960)

S B ST <Y T

where T is the temperature of the fluid, ¢p is the

specific heat at constant pressure of the fluid, and
% is the thermal conductivity of the fluid. The
boundary conditions for the energy problem are
that the temperature by continuity considerations,
equals T3 at the surface of the disk. At large dis-
tances from the disk, T — Tw. where T is the
temperature of the ambient fluid. In terms of the
non-dimensional variable 8= (7T — T%)/ (Tw-Tw)
and using Von Karman transformations, Eq. (14)
takes the form

1 d%0

Pr d¢?

do _
_Hd—§_0 (15)

where Pr is the Prandtl number given by, Pr=
cptt/ k. The boundary conditions for the energy
problem, in terms of & and Von Karman trans-
formations, are expressed as

6(0)=1, > 0:0—>0 (16)

It should be pointed out that the similarity as-
pects of the transformation are linked to the sup-
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position that the velocity and temperature do not
change shape at different values of 7. Also, the
idea of angular symmetry has been invoked ; i.e.
0/0¢p=0.

The heat transfer from the disk surface to the
fluid is computed by application of Fourier’s law

0=—(L)w

Introducing the transformed variables, the expres-
sion for ¢ becomes

do(0)
@ dt (18)

By rephrasing the heat transfer results in terms of

a Nusselt number defined as, Ny=Qv /v /k( Tw— Ts)

the last equation becomes

d6(0)
=0 1
Ny dac (19)
The system of non-linear ordinary differential equa-
tions (9)-(11) and (15) is solved under the con-
ditions given by Eqgs. (13) and (16) for the three

components of the flow velocity and temperature

distribution, using the Crank-Nicolson method
(Ames, 1977). The resulting system of difference
equations has to be solved in the infinite domain
0< ¢ <o, A finite domain in the {-direction can
be used instead with ¢ chosen large enough to
ensure that the solutions are not affected by im-
posing the asymptotic conditions at a finite dis-
tance. The independence of the results from the
length of the finite domain and the grid density
was ensured and successfully checked by various
trial and error numerical experimentations. Com-
putations are carried out for (=12 and it is
found that a value of {.=10 is adequate for the
ranges of the parameters studied here. It should be
pointed that the steady state solutions reported by
Attia and Aboul-Hassan (2001) are reproduced
by setting Bi=0 in the present results. These
comparisons lend confidence in the correctness of
the solutions presented in this paper.

3. Results and Discussion

Figures 1(a) and 1(b) present the profile of the
radial velocity component F for various values of
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Fig. 1 Steady state profile of the radial velocity com-
ponent I for various values of the Hall para-
meter Be and the ion slip parameter B7

the ion slip parameter Bi and for Be<0 and
Be >0, respectively. In these figures y=1. Figure
1 shows that for Be=—0.5 and Bi=0, the radial
flow reverses its direction at a certain distance
from the disk. Increasing Bi, for Be <0, leads to
a negative F for all { as a result of increasing
the effective conductivity (=y/(a*+ Be?) which
increases the damping force on F. Figure 1(a)
indicates also that for BeBi >0, increasing the
magnitude of B7 increases I due to the decrease
in the effective conductivity which decreases the
damping force on F'. Large values of Bi reduce
the effective conductivity more which corresponds
to the hydrodynamic case. Figure 1(b) indicates
that when Be >0 and Be >0, increasing Bi de-
creases F for some {. This may be attributed to
the fact that in the magnetic force term in Eq. (7),
the effect of B7 on the numerator is stronger than
its effect on the denominator which increases the
damping force on F and consequently decreases
F for some . Also, for B:<0, increasing the
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Fig. 2 Steady state profile of the azimuthal velocity
component G for various values of the Hall
parameter Be and the ion slip parameter B7

magnitude of B increases F for small ¢ and then
decreases it for larger ¢. This accounts for a cross-
over in the F-¢ chart with Bz. It is of interest
to detect that the variation of F with B7 depends
on ¢.

Figures 2(a) and 2(b) present the profile of
the azimuthal velocity component G for various
values of the ion slip parameter B7 and for Be <
0 and Be =0, respectively. In both figures, y=1.
As shown in Fig. 2(a), small negative values of
Be increases G as a result of decreasing the mag-
netic damping. Increasing Bz, with Be<0, de-
creases GG, due to the increase in the effective co-
nductivity. Figure 2(a) shows also that for nega-
tive values of Bi, increasing the magnitude of
Bi increases G due to the decrease in the damp-
ing force on G. Figure 2(b) describes the same
findings. For BeBi >0, increasing B7 increases
G, while for BeBi<0, increasing the magnitude
of Bi decreases G.

Figures 3(a) and 3(b) present the profile of
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Fig. 3 Steady state profile of the vertical velocity
component H for various values of the Hall
parameter Be and the ion slip parameter Bi

the axial velocity component H for various val-
ues of the ion slip parameter B and Be<0 and
Be>=0, respectively. In these figures y=1. As
shown in Fig. 3(a), for Be=—0.5 and Bi=0,
the axial velocity H reverses its direction at a cer-
tain . Increasing B7 increases H, as a result of
decreasing F', and reverses its direction for all ¢.
Figure 3(b) shows that for Be >0, increasing the
magnitude of Bi, in general, decreases H as a
result of increasing F. It is also shown in Fig. 3
(b) that the axial flow is always towards the
disk for all values of B:.

Table | present the variation of the Nusselt
number N, with the Hall parameter Be, and the
ion slip parameter Bi for Pr=0.7 and 10. In
these tables y=1. It is clear that For Pr=10 and
Be<0, increasing Bi increase N,. For Pr=0.7
and Be<0, increasing B7 decreases NV, but in-
creasing Bi more increases N,. For Be>0, in-
creasing the magnitude of B7 increases N, for
all Pr. It is seen in table 1 that increasing Pr
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Table 1 Variation of the steady state value of Ny
with Be, Bi and Pr

Ny Pr=0.1 Pr=10
Be=0, Bi=0 0.2232 0.881
Be=—0.5, Bi=0 0.1692 0.712
Be=-—0.5, Bi=0.5 0.1318 0.581
Be=—0.5, Bi=1 0.0819 0.394
Be=—0.5, Bi=—0.5 0.1963 0.799
Be=—0.5, Bi=—1 0.2162 0.859
Be=0.5, Bi=0 0.2777 1.058
Be=0.5, Bi=0.5 0.2758 1.043
Be=0.5, Bi=1 0.2232 1.037
Be=0.5, Bi=—0.5 0.1692 1.092
Be=0.5, Bi=—1 0.1318 1.161

increases N,. The influence of Be and B7 on N,
is more pronounced for higher Pr than smaller
values of Pr. It is seen also that the effect of the
ion slip on N, becomes more apparent for Be <
0 than for Be >0 for all values of Pr.

5. Conclusions

The steady MHD flow due to an infinite rota-
ting disk was studied with heat transfer consid-
ering the Hall effect and the ion slip. The inclu-
sion of the Hall effect and the ion slip reveals
some interesting phenomena and it is found that
the signs of the Hall and ion slip parameters are
important. It was found that both the radial and
vertical velocity components reverse direction for
certain values of the magnetic field, the Hall and
the ion slip parameters. The variation of the ve-
locity components with the ion slip depends on
¢ especially for positive values of the ion slip
parameter. Also, the effect of the ion slip para-
meter is more apparent for positive values of the
Hall parameter than negative values. The heat
transfer at the surface of the disk is found to de-
pend on the magnitude and the sign of the Hall
and ion slip parameters. The dependence of the
heat transfer on the Hall and ion slip parame-
ters was found to depend on the Prandtl number
and becomes more clear for higher values of the
Prandtl number. Also, the variation of the heat
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transfer with the ion slip was shown to depend
upon the sign of the Hall parameter.

References

Aboul-Hassan, A.L. and Attia, H. A., 1997,
“The Flow due to a Rotating Disk with Hall
Effect,” Physics Letters A, Vol. 228, pp. 286~290.

Ames, W. F., 1977, Numerical Methods in Par-
tial Differential Equations, 2nd ed., Academic
Press, New York.

Attia, H. A. and Aboul-Hassan, A. L., 2001,
“Effect of Hall Current on the Unsteady MHD
Flow Due to a Rotating Disk with Uniform Suc-
tion or Injection,” Applied Mathematical Modeling,
Vol. 25, No. 12, pp. 1089~ 1098.

Attia, H. A., 2002, “On the Effectiveness of
Uniform Suction-Injection on the Unsteady Flow
Due to a Rotating Disk with Heat Transfer,” Int.
Comm. Heat and Mass Transfer, Vol. 29, No. 5,
pp. 653~661.

Attia, H. A., 1998, “Unsteady MHD Flow Near
a Rotating Porous Disk with Uniform Suction or
Injection,” Fluid Dynamics Research 23, pp. 283~
290.

Benton, E. R., 1966, “On the Flow Due to a
Rotating Disk,” J. Fluid Mech, Vol. 24, No. 4,
pp. 781~800.

Cochran, W.G., 1934, “The Flow Due to a
Rotating Disk,” Proc. Cambridge Philos, Soc.,
Vol. 30, No. 3, pp. 365~375.

El-Mistikawy, T. M. A. and Attia, H. A., 1990,
“The Rotating Disk Flow in the Presence of Strong
Magnetic Field,” Proc. 3rd Int. Congress of Fluid

Hazem Ali Attia

Mechanics, Cairo, Egypt, Vol. 3, pp. 1211~1222,
Jan. 2-4.

El-Mistikawy, T. M. A., Attia, H. A. and Megahed,
A. A., 1991, “The Rotating Disk Flow in the Pre-
sence of Weak Magnetic Field,” Proc. 4th Con-
ference on Theoretical and Applied Mechanics,
Cairo, Egypt, pp. 69~82, Nov. 5-7.

Kuiken, H. K., 1971, “The Effect of Normal
Blowing on the Flow Near a Rotating disk of
Infinite Extent,” J. Fluid Mech, Vol. 47, No. 4,
pp- 789~798.

Millsaps, K. and Pohlhausen, K., 1952, “Heat
Transfer by Laminar Flow from a Rotating Disk,”
J. of the Aeronautical Sciences, Vol. 19, pp. 120~
126.

Ockendon, H., 1972, “An Asymptotic Solution
for Steady Flow Above an Infinite Rotating Disk
with Suction,” Quart. J. Fluid Mech. Appl. Math,
Vol. XXV, pp. 291~301.

Sparrow, E. M. and Gregg, J. L., 1960, “Mass
Transfer, Flow, and Heat Transfer About a Rota-
ting Disk,” ASME J. of Heat Transfer, pp.294~
302.

Stuart, J. T., 1954, “On the Effects of Uniform
Suction on the Steady Flow Due to a Rotating
Disk,” Quart. J. Mech. Appl. Math, 7, pp. 446~
457.

Sutton, G. W. and Sherman, A., 1965, Engi-
neering Magnetohydrodynamics, McGraw-Hill,
New York.

von Karman, T., 1921, “Uber Laminare und
Turbulente Reibung,” ZAMM, Vol. 1, No.4,
pp- 233~235.



	Ion Slip Effect on the Flow Due to a Rotating Disk with Heat Transfer
	1. Introduction
	2. Basic Equations
	3. Results and Discussion
	4. Conclusions
	References


